快捷搜索:   服务器  安全  linux 安全  MYSQL  dedecms

对C++中常用的排序法的研究和分析(2)


  //当左边部分有值(left<j),递归左半边 
  if(left<j) 
    run(pData,left,j); 
  //当右边部分有值(right>i),递归右半边 
  if(right>i) 
    run(pData,i,right); 

void QuickSort(int* pData,int Count) 

  run(pData,0,Count-1); 

void main() 

  int data[] = {10,9,8,7,6,5,4}; 
  QuickSort(data,7); 
  for (int i=0;i<7;i++) 
    cout<<data[i]<<\" \"; 
  cout<<\"\\n\"; 

    这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
 
    1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
 
    2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
 
    第一层递归,循环n次,第二层循环2*(n/2)......
 
    所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
 
    所以算法复杂度为O(log2(n)*n)
 
    其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟),但是糟糕的情况只会持续一个流程,到下一个流程的时候就很可能已经避开了该中间的最大和最小值,因为数组下标变化了,于是中间值不在是那个最大或者最小值。但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。 

    如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。


 
    三、其他排序
 
    1.双向冒泡: 

    通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。 

    代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。 

    写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。 

    反正我认为这是一段有趣的代码,值得一看。 
 #include <iostream.h> 
void Bubble2Sort(int* pData,int Count) 

  int iTemp; 
  int left = 1; 
  int right =Count -1; 
  int t; 
  do 
  { 
    //正向的部分 
    for(int i=right;i>=left;i--) 
    { 
      if(pData[i]<pData[i-1])  [Page]
      { 
        iTemp = pData[i]; 
        pData[i] = pData[i-1]; 
        pData[i-1] = iTemp; 
        t = i; 
      } 
    } 
    left = t+1; 
    //反向的部分 
    for(i=left;i<right+1;i++) 
    { 
      if(pData[i]<pData[i-1]) 
      { 
        iTemp = pData[i]; 
        pData[i] = pData[i-1]; 
        pData[i-1] = iTemp; 
        t = i; 
      } 
    } 
    right = t-1; 
  }while(left<=right); 

void main() 

  int data[] = {10,9,8,7,6,5,4}; 
  Bubble2Sort(data,7); 
  for (int i=0;i<7;i++) 
    cout<<data[i]<<\" \"; 
  cout<<\"\\n\"; 

    2.SHELL排序 

    这个排序非常复杂,看了程序就知道了。
 
    首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。 

    工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序以次类推。 

    基本思想:
 
    先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为dl的倍数的记录放在同一个组中(所以d值越小,分组越少,每组的元素越多)。先在各组内进行直接插人排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。 

    该方法实质上是一种分组插入方法。 

    (备注:增量中最好有基数也有偶数,所以可以人为设置)
 #include <iostream.h> 
int ShellPass(int * array,int d) //一趟增量为d的希尔插入排序
{
 int temp;
 int k=0;
 for(int i=d+1;i<13;i++)
 {
  if(array[i]<array[i-d])
  {
   temp=array[i]; [Page]
   int j=i-d;
   do
   {
    array[j+d]=array[j];
    j=j-d;
    k++;
   }while(j>0 && temp<array[j]);
   array[j+d]=temp;
  }
  k++;
 }
 return k;
}
void ShellSort(int * array) //希尔排序
{
 int count=0;
 int ShellCount=0;
 int d=12;                            //一般增量设置为数组元素个数,不断除以2以取小
 do
 {
  d=d/2;
  ShellCount=ShellPass(array,d);
  count+=ShellCount;
 }while(d>1);
 cout<<\"希尔排序中,关键字移动次数为:\"<<count<<endl;
}
void main() 

  int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1}; 
  ShellSort(data); 
  for (int i=0;i<12;i++) 
    cout<<data[i]<<\" \"; 
  cout<<\"\\n\"; 

    算法分析
 
    1.增量序列的选择
 
    Shell排序的执行时间依赖于增量序列。 

    好的增量序列的共同特征: 

    ① 最后一个增量必须为1; 

    ② 应该尽量避免序列中的值(尤其是相邻的值)互为倍数的情况。 

    有人通过大量的实验,给出了目前较好的结果:当n较大时,比较和移动的次数约在nl.25到1.6n1.25之间。 

    2.Shell排序的时间性能优于直接插入排序 

    希尔排序的时间性能优于直接插入排序的原因: 

    ①当文件初态基本有序时直接插入排序所需的比较和移动次数均较少。 

    ②当n值较小时,n和n2的差别也较小,即直接插入排序的最好时间复杂度O(n)和最坏时间复杂度0(n2)差别不大。 

    ③在希尔排序开始时增量较大,分组较多,每组的记录数目少,故各组内直接插入较快,后来增量di逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但由于已经按di-1作为距离排过序,使文件较接近于有序状态,所以新的一趟排序过程也较快。 
    因此,希尔排序在效率上较直接插人排序有较大的改进。 

    3.稳定性 

    希尔排序是不稳定的。

    四、基于模板的通用排序: 

    这个程序我想就没有分析的必要了,大家看一下就可以了。不明白可以在论坛上问。

 MyData.h文件  /////////////////////////////////////////////////////// 
class CMyData  

public: 
  CMyData(int Index,char* strData); 
  CMyData(); 
  virtual ~CMyData();  [Page]
  int m_iIndex; 
  int GetDataSize(){ return m_iDataSize; }; 
  const char* GetData(){ return m_strDatamember; }; 
  //这里重载了操作符: 
  CMyData& operator =(CMyData &SrcData); 
  bool operator <(CMyData& data ); 
  bool operator >(CMyData& data ); 
private: 
  char* m_strDatamember; 
  int m_iDataSize; 
}; 


 


 

 //////////////////////////////////////////////////////// 
MyData.cpp文件  //////////////////////////////////////////////////////// 
CMyData::CMyData(): 
m_iIndex(0), 
m_iDataSize(0), 
m_strDatamember(NULL) 


CMyData::~CMyData() 

  if(m_strDatamember != NULL) 
    delete[] m_strDatamember; 
  m_strDatamember = NULL; 

CMyData::CMyData(int Index,char* strData): 
m_iIndex(Index), 
m_iDataSize(0), 
m_strDatamember(NULL) 

  m_iDataSize = strlen(strData); 
  m_strDatamember = new char[m_iDataSize+1]; 
  strcpy(m_strDatamember,strData); 

CMyData& CMyData::operator =(CMyData &SrcData) 

  m_iIndex = SrcData.m_iIndex; 
  m_iDataSize = SrcData.GetDataSize(); 
  m_strDatamember = new char[m_iDataSize+1]; 
  strcpy(m_strDatamember,SrcData.GetData()); 
  return *this; 

bool CMyData::operator <(CMyData& data ) 

  return m_iIndex<data.m_iIndex; 

bool CMyData::operator >(CMyData& data ) 

  return m_iIndex>data.m_iIndex; 
}  ///////////////////////////////////////////////////////////  //////////////////////////////////////////////////////////  //主程序部分 
#include <iostream.h> 
#include \"MyData.h\" 
template <class T> 
void run(T* pData,int left,int right) 

  int i,j; 
  T middle,iTemp; 
  i = left;  [Page]
  j = right; 
  //下面的比较都调用我们重载的操作符函数 
  middle = pData[(left+right)/2]; //求中间值 
  do{ 
    while((pData[i]<middle) && (i<right))//从左扫描大于中值的数 
      i++;      
    while((pData[j]>middle) && (j>left))//从右扫描大于中值的数 
      j--; 
    if(i<=j)//找到了一对值 
    { 
      //交换 
      iTemp = pData[i]; 
      pData[i] = pData[j]; 
      pData[j] = iTemp; 
      i++; 
      j--; 
    } 
  }while(i<=j);//如果两边扫描的下标交错,就停止(完成一次) 
  //当左边部分有值(left<j),递归左半边 
  if(left<j) 
    run(pData,left,j); 
  //当右边部分有值(right>i),递归右半边 
  if(right>i) 
    run(pData,i,right); 

template <class T> 
void QuickSort(T* pData,int Count) 

  run(pData,0,Count-1); 

void main() 

  CMyData data[] = { 
    CMyData(8,\"xulion\"), 
    CMyData(7,\"sanzoo\"), 
    CMyData(6,\"wangjun\"), 
    CMyData(5,\"VCKBASE\"), 
    CMyData(4,\"jacky2000\"), 
    CMyData(3,\"cwally\"), 
    CMyData(2,\"VCUSER\"), 
    CMyData(1,\"isdong\") 
  }; 
  QuickSort(data,8); 
  for (int i=0;i<8;i++) 
    cout<<data[i].m_iIndex<<\" \"<<data[i].GetData()<<\"\\n\"; 
  cout<<\"\\n\"; 

顶(0)
踩(0)

您可能还会对下面的文章感兴趣:

最新评论