快捷搜索:   服务器  安全  linux 安全  MYSQL  dedecms

完整的学习C++的读书路线图(5)

    printf()函数参数格式详解

    printf的格式控制的完整格式:

    % - 0 m.n l或h 格式字符

    下面对组成格式说明的各项加以说明:

    ①%:表示格式说明的起始符号,不可缺少。

    ②-:有-表示左对齐输出,如省略表示右对齐输出。

    ③0:有0表示指定空位填0,如省略表示指定空位不填。

    ④m.n:m指域宽,即对应的输出项在输出设备上所占的字符数。N指精度。用于说明输出的实型数的小数位数。为指定n时,隐含的精度为n=6位。

    ⑤l或h:l对整型指long型,对实型指double型。h用于将整型的格式字符修正为short型。

    ——————————————————————————————————————-

    格式字符

    格式字符用以指定输出项的数据类型和输出格式。

    ①d格式:用来输出十进制整数。有以下几种用法:

    %d:按整型数据的实际长度输出。

    %md:m为指定的输出字段的宽度。如果数据的位数小于m,则左端补以空格,若大于m,则按实际位数输出。

    %ld:输出长整型数据。

    ②o格式:以无符号八进制形式输出整数。对长整型可以用"%lo"格式输出。同样也可以指定字段宽度用“%mo”格式输出。

    例:

    main()

    { int a = -1;

    printf("%d, %o", a, a);

    }

    运行结果:-1,177777

    程序解析:-1在内存单元中(以补码形式存放)为(1111111111111111)2,转换为八进制数为(177777)8.

    ③x格式:以无符号十六进制形式输出整数。对长整型可以用"%lx"格式输出。同样也可以指定字段宽度用"%mx"格式输出。

    ④u格式:以无符号十进制形式输出整数。对长整型可以用"%lu"格式输出。同样也可以指定字段宽度用“%mu”格式输出。

    ⑤c格式:输出一个字符。

    ⑥s格式:用来输出一个串。有几中用法

    %s:例如:printf("%s", "CHINA")输出"CHINA"字符串(不包括双引号)。

    %ms:输出的字符串占m列,如字符串本身长度大于m,则突破获m的限制,将字符串全部输出。若串长小于m,则左补空格。

    %-ms:如果串长小于m,则在m列范围内,字符串向左靠,右补空格。

    %m.ns:输出占m列,但只取字符串中左端n个字符。这n个字符输出在m列的右侧,左补空格。

    %-m.ns:其中m、n含义同上,n个字符输出在m列范围的左侧,右补空格。如果n>m,则自动取n值,即保证n个字符正常输出。

    ⑦f格式:用来输出实数(包括单、双精度),以小数形式输出。有以下几种用法:

    %f:不指定宽度,整数部分全部输出并输出6位小数。

    %m.nf:输出共占m列,其中有n位小数,如数值宽度小于m左端补空格。

    %-m.nf:输出共占n列,其中有n位小数,如数值宽度小于m右端补空格。

    ⑧e格式:以指数形式输出实数。可用以下形式:

    %e:数字部分(又称尾数)输出6位小数,指数部分占5位或4位。

    %m.ne和%-m.ne:m、n和“-”字符含义与前相同。此处n指数据的数字部分的小数位数,m表示整个输出数据所占的宽度。

    ⑨g格式:自动选f格式或e格式中较短的一种输出,且不输出无意义的零。

    ——————————————————————————————————————-

    关于printf函数的进一步说明:

    如果想输出字符"%",则应该在“格式控制”字符串中用连续两个%表示,如:

    printf("%f%%", 1.0/3);

    输出0.333333%.

    ——————————————————————————————————————-

    对于单精度数,使用%f格式符输出时,仅前7位是有效数字,小数6位。

    对于双精度数,使用%lf格式符输出时,前16位是有效数字,小数6位。

    */

    /*

    STL中map用法详解

    Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道。这里说下map内部数据的组织,map内部自建一颗红黑树(一种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map内部所有的数据都是有序的,后边我们会见识到有序的好处。

    下面举例说明什么是一对一的数据映射。比如一个班级中,每个学生的学号跟他的姓名就存在着一一映射的关系,这个模型用map可能轻易描述,很明显学号用int描述,姓名用字符串描述(本篇文章中不用char *来描述字符串,而是采用STL中string来描述),下面给出map描述代码:

    Map<int, string> mapStudent;

    1. map的构造函数

    map共提供了6个构造函数,这块涉及到内存分配器这些东西,略过不表,在下面我们将接触到一些map的构造方法,这里要说下的就是,我们通常用如下方法构造一个map:

    Map<int, string> mapStudent;

    2. 数据的插入

    在构造map容器后,我们就可以往里面插入数据了。这里讲三种插入数据的方法:

    第一种:用insert函数插入pair数据,下面举例说明(以下代码虽然是随手写的,应该可以在VC和GCC下编译通过,大家可以运行下看什么效果,在VC下请加入这条语句,屏蔽4786警告 #pragma warning (disable:4786) )

 #include <map>

#include <string>

#include <iostream>

Using namespace std;

Int main()

{

Map<int, string> mapStudent;

mapStudent.insert(pair<int, string>(1, “student_one”));

mapStudent.insert(pair<int, string>(2, “student_two”));

mapStudent.insert(pair<int, string>(3, “student_three”));

map<int, string>::iterator iter;

for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)

{

Cout<<iter->first<<” ”<<iter->second<<end;

}

}

    第二种:用insert函数插入value_type数据,下面举例说明

 #include <map>

#include <string>

#include <iostream>

Using namespace std;

Int main()

{

Map<int, string> mapStudent;

mapStudent.insert(map<int, string>::value_type (1, “student_one”));

mapStudent.insert(map<int, string>::value_type (2, “student_two”));

mapStudent.insert(map<int, string>::value_type (3, “student_three”));

map<int, string>::iterator iter;

for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)

{

Cout<<iter->first<<” ”<<iter->second<<end;

}

}

    第三种:用数组方式插入数据,下面举例说明

 #include <map>

#include <string>

#include <iostream>

Using namespace std;

Int main()

{

Map<int, string> mapStudent;

mapStudent[1] = “student_one”;

mapStudent[2] = “student_two”;

mapStudent[3] = “student_three”;

map<int, string>::iterator iter;

for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)

{

Cout<<iter->first<<” ”<<iter->second<<end;

}

}

    以上三种用法,虽然都可以实现数据的插入,但是它们是有区别的,当然了第一种和第二种在效果上是完成一样的,用insert函数插入数据,在数据的插入上涉及到集合的唯一性这个概念,即当map中有这个关键字时,insert操作是插入数据不了的,但是用数组方式就不同了,它可以覆盖以前该关键字对应的值,用程序说明

    mapStudent.insert(map<int, string>::value_type (1, “student_one”));

    mapStudent.insert(map<int, string>::value_type (1, “student_two”));

    上面这两条语句执行后,map中1这个关键字对应的值是“student_one”,第二条语句并没有生效,那么这就涉及到我们怎么知道insert语句是否插入成功的问题了,可以用pair来获得是否插入成功,程序如下

    Pair<map<int, string>::iterator, bool> Insert_Pair;

    Insert_Pair = mapStudent.insert(map<int, string>::value_type (1, “student_one”));

    我们通过pair的第二个变量来知道是否插入成功,它的第一个变量返回的是一个map的迭代器,如果插入成功的话Insert_Pair.second应该是true的,否则为false.

    下面给出完成代码,演示插入成功与否问题

 #include <map>

#include <string>

#include <iostream>

Using namespace std;

Int main()

{

Map<int, string> mapStudent;

Pair<map<int, string>::iterator, bool> Insert_Pair;

Insert_Pair = mapStudent.insert(pair<int, string>(1, “student_one”));

If(Insert_Pair.second == true)

{

Cout<<”Insert Successfully”<<endl;

}

Else

{

Cout<<”Insert Failure”<<endl;

}

Insert_Pair = mapStudent.insert(pair<int, string>(1, “student_two”));

If(Insert_Pair.second == true)

{

Cout<<”Insert Successfully”<<endl;

}

Else

{

Cout<<”Insert Failure”<<endl;

}

map<int, string>::iterator iter;

for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)

{

Cout<<iter->first<<” ”<<iter->second<<end;

}

}

    大家可以用如下程序,看下用数组插入在数据覆盖上的效果

 #include <map>

#include <string>

#include <iostream>

Using namespace std;

Int main()

{

Map<int, string> mapStudent;

mapStudent[1] = “student_one”;

mapStudent[1] = “student_two”;

mapStudent[2] = “student_three”;

map<int, string>::iterator iter;

for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)

{

Cout<<iter->first<<” ”<<iter->second<<end;

}

}

    3. map的大小

    在往map里面插入了数据,我们怎么知道当前已经插入了多少数据呢,可以用size函数,用法如下:

    Int nSize = mapStudent.size();

    4. 数据的遍历

    这里也提供三种方法,对map进行遍历

    第一种:应用前向迭代器,上面举例程序中到处都是了,略过不表

    第二种:应用反相迭代器,下面举例说明,要体会效果,请自个动手运行程序

 #include <map>

#include <string>

#include <iostream>

Using namespace std;

Int main()

{

Map<int, string> mapStudent;

mapStudent.insert(pair<int, string>(1, “student_one”));

mapStudent.insert(pair<int, string>(2, “student_two”));

mapStudent.insert(pair<int, string>(3, “student_three”));

map<int, string>::reverse_iterator iter;

for(iter = mapStudent.rbegin(); iter != mapStudent.rend(); iter++)

{

Cout<<iter->first<<” ”<<iter->second<<end;

}

}

    第三种:用数组方式,程序说明如下

 #include <map>

#include <string>

#include <iostream>

Using namespace std;

Int main()

{

Map<int, string> mapStudent;

mapStudent.insert(pair<int, string>(1, “student_one”));

mapStudent.insert(pair<int, string>(2, “student_two”));

mapStudent.insert(pair<int, string>(3, “student_three”));

int nSize = mapStudent.size()

//此处有误,应该是 for(int nIndex = 1; nIndex <= nSize; nIndex++)

//by rainfish

for(int nIndex = 0; nIndex < nSize; nIndex++)

{

Cout<<mapStudent[nIndex]<<end;

}

}

    5. 数据的查找(包括判定这个关键字是否在map中出现)

    在这里我们将体会,map在数据插入时保证有序的好处。

    要判定一个数据(关键字)是否在map中出现的方法比较多,这里标题虽然是数据的查找,在这里将穿插着大量的map基本用法。

    这里给出三种数据查找方法

    第一种:用count函数来判定关键字是否出现,其缺点是无法定位数据出现位置,由于map的特性,一对一的映射关系,就决定了count函数的返回值只有两个,要么是0,要么是1,出现的情况,当然是返回1了

    第二种:用find函数来定位数据出现位置,它返回的一个迭代器,当数据出现时,它返回数据所在位置的迭代器,如果map中没有要查找的数据,它返回的迭代器等于end函数返回的迭代器,程序说明

 #include <map>

#include <string>

#include <iostream>

Using namespace std;

Int main()

{

Map<int, string> mapStudent;

mapStudent.insert(pair<int, string>(1, “student_one”));

mapStudent.insert(pair<int, string>(2, “student_two”));

mapStudent.insert(pair<int, string>(3, “student_three”));
map<int, string>::iterator iter;

iter = mapStudent.find(1);

if(iter != mapStudent.end())

{

Cout<<”Find, the value is ”<<iter->second<<endl;

}

Else

{

Cout<<”Do not Find”<<endl;

}

}

    第三种:这个方法用来判定数据是否出现,是显得笨了点,但是,我打算在这里讲解

    Lower_bound函数用法,这个函数用来返回要查找关键字的下界(是一个迭代器)

    Upper_bound函数用法,这个函数用来返回要查找关键字的上界(是一个迭代器)

    例如:map中已经插入了1,2,3,4的话,如果lower_bound(2)的话,返回的2,而upper-bound(2)的话,返回的就是3

    Equal_range函数返回一个pair,pair里面第一个变量是Lower_bound返回的迭代器,pair里面第二个迭代器是Upper_bound返回的迭代器,如果这两个迭代器相等的话,则说明map中不出现这个关键字,程序说明

 #include <map>

#include <string>

#include <iostream>

Using namespace std;

Int main()

{

Map<int, string> mapStudent;

mapStudent[1] = “student_one”;

mapStudent[3] = “student_three”;

mapStudent[5] = “student_five”;

map<int, string>::iterator iter;

iter = mapStudent.lower_bound(2);

{

//返回的是下界3的迭代器

Cout<<iter->second<<endl;

}

iter = mapStudent.lower_bound(3);

{

//返回的是下界3的迭代器

Cout<<iter->second<<endl;

}

iter = mapStudent.upper_bound(2);

{

//返回的是上界3的迭代器

Cout<<iter->second<<endl;

}

iter = mapStudent.upper_bound(3);

{

//返回的是上界5的迭代器
顶(0)
踩(0)

您可能还会对下面的文章感兴趣:

最新评论